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Abstract

This paper addresses the transcendental eigenvalue problem, which arises for those structures, e.g.,
frames, for which dynamic member stiffnesses are available and are exact, in the sense that the appropriate
differential equations have been solved. Thus it does not relate to traditional finite element vibration (or
buckling) methods which are approximate and give a linear eigenvalue problem which can be solved by
many excellent methods.

The well-established Wittrick–Williams algorithm is a powerful, reliable and efficient means of obtaining
the desired number of natural frequencies for transcendental eigenvalue problems but, except for one very
recent paper involving explicit derivatives and a recursive method, the corresponding vibration mode
computations suffer from various difficulties and far from match the elegance of the frequency
computations. This paper presents a newly developed, mathematically elegant and computationally
efficient algorithm for accurate and reliable computation of vibration modes. It uses standard inverse
iteration with approximate natural frequencies of only first order accuracy to produce the corresponding
vibration modes to second order accuracy. Extrapolation can then be used to improve the original natural
frequencies to second order accuracy. Moreover, the algorithm automatically provides a helpful so-called
‘‘ *m-check’’ which enables the acceptability of the mode accuracy to be judged. Numerical examples
presented include some demanding ones, e.g., with coincident natural frequencies. These show the excellent
performance of the method. Two advantages over the recent recursive paper are that explicit derivatives are
replaced by differencing and recursion is avoided. In combination, these two advantages make the new
method much more suitable for retrofitting into existing computer programs.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. General introduction

This paper does not relate to traditional finite element vibration (or buckling) methods, which
discretize a problem into approximately represented finite elements, the number of which depends
upon the accuracy required, and which result in a linear eigenproblem for which many solution
methods and a voluminous literature exist. Instead, it relates to those frames and other structures
for which the differential equations of component members can be solved to obtain exact dynamic
member stiffness matrices, so that exact results are obtained without the need to divide members
into elements. Hence, the global dynamic stiffness matrix of the structure is a transcendental
function of frequency, i.e., its elements are trigonometric and/or hyperbolic functions of
frequency. There is relatively little literature on the solution of the resulting transcendental
eigenproblem, which can be expressed as

KðoÞD ¼ 0: ð1Þ

Here D is the displacement amplitude vector for the joints at which the members are
connected together and KðoÞ is the global dynamic stiffness matrix, each stiffness coefficient of
which is a transcendental function of the frequency o: Note that because these methods are
‘‘exact’’, there is no need to divide the members into parts by introducing joints, i.e., nodes, along
their lengths except for the exceptional cases described later in this paper. Note also that the
examples in this paper are for plane frames and are solved by using existing member dynamic
stiffness matrices [1] without the need for further subdivision, as done in static stiffness matrix
methods.
It is assumed that the natural frequencies to which the required modes correspond have already

been obtained. Although exact natural frequencies are the ideal objective, they are usually found
only to a certain number of digits or, exceptionally, to virtually machine accuracy. The most
successful and reliable methods [1–4] for computation of natural frequencies in dynamic stiffness
matrix methods all use the Wittrick–Williams (or W–W) algorithm [1,5–7] and so it is adopted in
this paper as our work method.
To date, with one exception, mode-finding methods associated with the natural frequencies

given by the W–W algorithm have been relatively crude, in the sense that they yield relatively low
accuracy and insufficient robustness. The exception is a very recent and powerful recursive
method [8], which obtains extremely accurate natural frequencies and modes whenever
the cost of doing so is justified. It has many relationships with the method presented in the
present paper which are indicated at appropriate places in this paper. The motivation for
the present paper is that the recursive paper needs explicit expressions for the derivatives
of the member stiffnesses which, coupled with its recursive nature, make it harder to
implement in new computer programs and an order of magnitude harder to retrofit to the large
body of existing programs than is the method presented in this paper. This is the motivation for
the new method, which is extremely accurate and robust but, above all, relatively simple to
implement.
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1.2. Key features of the Wittrick–Williams algorithm

The W–W algorithm does not directly compute the natural frequencies. Instead, it gives the
total number of natural frequencies below an arbitrarily chosen frequency o ¼ o� as

J ¼ J0ðo�Þ þ sfKðo�Þg: ð2Þ

Here sfKg is the sign count of K; which is calculated as the number of negative leading diagonal
elements of the upper triangular matrix KD obtained from K by ordinary Gaussian elimination
and; J0 is the number of natural frequencies below o� when all the joint displacements D are
constrained to be zero. For convenience, the natural frequencies of any member with both ends
fixed are denoted by oF and are called member fixed-end frequencies, with the corresponding
modes being called local ones. Hence J0 ¼

P
Jm; where Jm is the number of oF of a member

subject to oFoo�; and the summation is over all members. Repeated use of Eq. (2) yields several
alternative iterative methods [1–4] which effectively narrowly bound the sought natural frequency
og within the frequency interval, ðol ;ouÞ; where ou and ol are upper and lower frequency bounds,
i.e.,

ou � oloTol 	 ð1þ ouÞ: ð3Þ

Here Tol is the user specified error tolerance and Eq. (3) effectively combines the relative error
control (good for magnitude of o around unity) and absolute error controls (good for large and
very large o) to cover both ordinary order and small values of og:
The simplest but slowest of the alternative iterative methods use bisection, as follows. If the ith

natural frequency is required, at step 1 J is computed from Eq. (2) at a trial value of o�; which
becomes an initial value of ou if JXi and otherwise becomes an initial value of ol : An initial value
of the opposite bound is then found by repeating step 1, with o� halved or doubled respectively,
as many times as necessary. Then step 2 bisects to obtain o� ¼ ðou þ olÞ=2; uses Eq. (2) to
calculate J and alters ou to ou ¼ o� if JXi and otherwise alters ol to ol ¼ o � : This step is
repeated until Eq. (3) is satisfied.
An important corollary of the W–W algorithm, which is used extensively in this paper, is that

the numbers of natural frequencies Nr and of member fixed-end frequencies Nr0 in the frequency
interval are

Nr ¼ J jou
�J jol

; Nr0 ¼ J0jou
�J0jol

: ð4a;bÞ

The Nr natural frequencies are multiple if Nr > 1 and are taken as ðol þ ouÞ=2:

1.3. Classification of vibration modes

As a precursor to discussing earlier mode-finding methods for the transcendental eigenproblem,
it is useful to first classify vibration modes into three physically distinct types. These are the
global, local and mixed ones of Table 1, as is now explained in detail.
Global modes are defined as ones for which at least some of the joint displacements participate,

i.e., Da0; and no member of the structure has a fixed-end frequency effectively coincident with
the natural frequency of the structure, so that Nr0 ¼ 0: In this paper this coincidence is interpreted
as olooFoou and is indicated by oFDog: (All modes are global ones for traditional finite
element methods unless refinements such as exact substructuring are used.)
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Local modes are defined as ones for which all joint displacements are nodal in the mode, i.e.,
D ¼ 0; so that inevitably Nr0 > 0:
Mixed modes are defined as ones for which one or more members have olooFoou; but for

which nevertheless some or all of the displacements of the joints participate, i.e., Da0 [9]. Hence
again Nr0 > 0:
Computationally, global modes are the easiest to handle because Nr0 ¼ 0: In contrast oFDog

for the other two mode types, so that a trivial analysis of the member stiffness coefficients krs

shows them to be infinite at oF ; so that some coefficients Kij of Kðo�Þ are also infinite. Hence the
first, second and fourth columns of Table 1 define the three mode types while the remaining two
columns contain consequences.
An alternative physically based argument for why Kij-N when oFDou is that, because oF

corresponds to a member vibrating without any end displacements, krs clearly becomes infinite
because multiplying it by a zero displacement gives a finite end clamping force. This physical
reasoning also suggests the use of a local ‘‘bubble shape’’ vibration mode, with amplitude C;
whenever oFDog: The alternative of using C directly is not adopted in this paper, in which
instead it is in effect used implicitly by inserting an interior node which is positioned such that
neither of the sub-members formed has oFDog [8]. This converts both local and mixed vibration
modes into global ones and hence unifies the approach to the three different types of vibration
mode.
Fig. 1 presents a simple example to illustrate global, local and mixed modes, plus the use of

interior nodes. The frame has three identical, rigidly connected, horizontal or vertical inextensible
members with their far ends built-in, see Fig. 1(a). The W–W algorithm of Eq. (2) shows that two
natural frequencies coincide when o ¼ oF ; i.e., og ¼ oF and Nr ¼ 2: However, an infinite set of
possible pairs of independent modes exists because any one possible pair can be combined in any
proportions to give further modes. Figs. 1(b)–(d) show three modes can be readily deduced
because each involves two members vibrating with equal amplitudes and no end displacements,
which ensures moment equilibrium at the sole joint of the frame. However, as expected, only two
of them are independent, because (b)=(c)+(d).
Fig. 1(e) indicates the sole joint necessary, i.e., joint 1 of Fig. 1(a), and Figs. 1(f)–(h) introduce

mid-length interior nodes into, respectively, the one, two or three members indicated by reference
to Fig. 1(a). Arrows indicate the degrees of freedom at the nodes, so that, for Figs. 1(e)–(h),
respectively, D contains 1, 3, 5 and 7 displacement amplitudes. The words at Fig. 1(i)–(t)
categorize the mode types for the 12 alternative combinations of mode and joint positions.
The independence and orthogonality of the modes for coincident natural frequencies are now

briefly discussed, to make the rest of the paper more readily intelligible. Any two of the three
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Table 1

Classification of vibration modes

Type D Nr0 In frequency interval (ol ;ou)

Any oF ? Any Kij-N?

Global a0 =0 None None

Local =0 >0 Some Some

Mixed a0 >0 Some Some

S. Yuan et al. / Journal of Sound and Vibration 269 (2004) 689–708692



modes of Figs. 1(b)–(d) can be chosen as an independent pair. Unfortunately, none of these three
possible pairs have the desirable feature of being mutually orthogonal. However, it is readily seen
that mode (d) is orthogonal to the mode obtained by summing modes (b) and (c), because the
members are identical and so the product of the (normalized) amplitudes for the three members
are 0, 1

2
and �1

2
; which sum to zero.

1.4. Review of existing methods

Methods should accommodate all mode cases. Earlier methods, called (M1)–(M5) here, include
[10]: (M1) when Nr ¼ 1; solving KDD ¼ 0 by giving the last element of D an arbitrary value; (M2)
instead solving KDD ¼ 0 with the last h � 1 elements of D null and the hth from last element
having an arbitrary value, where h is the distance up the diagonal of KD to its lowest negative
element when o ¼ ou; (M3) when Nr > 1; repeating (M2) for the Nr lowest negative elements of
KD at o ¼ ou; (M4) when Nr ¼ 1; solving KD ¼ P for a random P and; (M5) when Nr > 1;
repeating (M4) for Nr different random P’s.
Table 2(b) defines the criteria (C1)–(C11) used in Table 2(a) to indicate the performance of

the older methods (M1)–(M5), of the recent recursive method [8], which is denoted by (M6),
and (in anticipation) of the method presented in this paper. None of the older methods
satisfy (C11), which includes the infinite number of displacements within members, but (M3)
and (M5) can be made to do so by using an appropriate orthogonalization procedure [11].
Note that although (M1)–(M5) are old methods the small amount of more recent work on
mode-finding methods (other than (M6)) essentially consists of refinements of (M1)–(M5)
to produce mode-finding methods which complement the natural frequencies already obtained
by the W–W algorithm. Hence, the contents of Table 2 establish the need for new mode-finding
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Joints present Three possible modes

1 2

3
4

(a) (b) (c) (d)

(e)  1 (i)  local (j)  local (k)  local 

(f)  1,2 (l)  mixed (m)  local (n)  mixed 

(g)  1,2,3 (o)  mixed (p)  mixed (q)  mixed 

(h)  1,2,3,4 (r)  global (s)  global (t)  global 

Fig. 1. Illustrative frame example, used for three purposes: (1) the first row shows the frame and three possible modes

for og ¼ oF ; (2) the first column shows the joint freedoms before and after the introduction of one, two or three interior

nodes and; (3) the remaining entries, i.e., (i)–(t), form a table which gives the type of mode for the joint/node positioning

indicated in the first column and the mode, i.e., (b)–(d), given in the first row.
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methods for the transcendental eigenvalue problem, such as (M6) and the new method presented
in this paper.

2. The new high precision method

2.1. The basic theory

It is assumed temporarily that K0
g and K00

g are calculable and the following notation is used:

om ¼
ou þ ol

2
; Do ¼ ou � ol ;

Kl ¼ KðolÞ; Km ¼ KðomÞ; Ku ¼ KðouÞ;

Kg ¼ KðogÞ; K0
g ¼

dKðogÞ
do

; K00
g ¼

d2KðogÞ
do2

: ð5Þ

ARTICLE IN PRESS

Table 2

Comparison of methods: (a) assessment of the methods M1–M6 defined in the text and; (b) definitions of the criteria

used in (a). Note that for C1–C5 an element of subjective judgement is used to score from 10 (Excellent) to 1, whereas

criteria C6–C11 are either passed (O) or failed (	 )

(a)

Method Criterion

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

M1 9 9 9 8 3 	 O 	 	 	 	
M2 8 9 9 8 4 O O 	 	 	 	
M3 6 8 8 8 5 O O 	 	 O 	
M4 7 7 8 8 7 O O 	 	 	 	
M5 6 6 6 6 6 O O 	 	 O 	
M6 3 10 7 10 10 O O O O O O
present 7 8 8 9 9 O O O O O O

(b)

Criterion Description

Method is C1 simple

C2 fast

C3 cheap

C4 accurate

C5 reliable

C6 Useable when last element of D is zero

Method can find C7 Global modes

C8 Local modes

C9 Mixed modes

C10 Nr independent modes when Nr > 1

C11 Nr orthogonal modes when Nr > 1
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The cases in which K0
g and K00

g are incalculable clearly correspond to one or more members
having oFDog: Therefore, they can be overcome by inserting an interior node into any such
member [8], so that neither sub-member thus created has oFDog; and then defining K to be the
stiffness matrix after insertion of all such nodes. The appropriate positioning of these interior
nodes is covered in the next section.
Initially, consider the single root case, i.e., the W–W algorithm has shown that there is exactly

one natural frequency og in ðol ;ouÞ; so that Nr ¼ 1: Suppose also that om ¼ 1
2
ðol þ ouÞ is taken as

the approximate natural frequency. When o�og; detðKÞð¼ detðKgÞÞ ¼ 0 and the exact mode
vector Dg is the solution of KgDg ¼ 0: However, at om the matrix product of Km and Dg will not
vanish, i.e., KmDga0: Then a Taylor series expansion with respect to the natural frequency og

leads to

KmDg ¼ KgDg þ ðom � ogÞK0
gDg þ

ðom � ogÞ
2

2
K00

gDg þ OððDoÞ3Þ: ð6Þ

In the recent recursive method [8], it was assumed that explicit expressions are available for the
derivatives of the member stiffnesses krs and hence for K0: Therefore, it was not necessary for ol

and ou to be close together and so widely separated bounds were used to obtain the first result,
which was then improved recursively. However, for many types of member such explicit
expressions are not available, e.g., for most non-uniform ones, and so here K0

g is replaced by the
difference expression (7). Then noticing that KgDg ¼ 0 and ou � 2og þ ol ¼ 2ðom � ogÞ enables
Eq. (6) to be written as Eq. (8)

K0
g ¼

Ku � Kl

ou � ol

�
ðou � 2og þ olÞ

2
K00

g þ OððDoÞ2Þ; ð7Þ

KmDg ¼
om � og

ou � ol

ðKu � KlÞDg �
ðom � ogÞ

2

2
K00

gDg þ OððDoÞ3Þ: ð8Þ

Working to first order only gives the standard generalized eigenproblem

KmD ¼ *mðKu � KlÞD; ð9Þ

where D approximates Dg very closely. (Note that *m is used here to avoid confusion with the
slightly different m of the recent recursive method [8]).
Comparing Eqs. (8) and (9) gives

*mD
om � og

ou � ol

: ð10Þ

Hence for the range used below, i.e., oloooou; to a very good approximation

j *mjo1
2
: ð11Þ

Eqs. (9) and (11) are the governing equations for finding D, i.e., for finding Dg to high accuracy
(for higher accuracy closer bounds ou and ol can be used, unless their closeness causes ill-
conditioning). Eqs. (9)–(11) are very instructive and lead naturally to an algorithm with several
attractive and desirable features, as follows.
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2.2. Inverse iteration

Solving Eq. (9) involves many eigenpairs but, because Nr ¼ 1; only one of them satisfies
oloooou:Hence, only the numerically smallest eigenvalue *m can satisfy Eq. (11). A method that is
guaranteed [12] to converge on the eigenpair giving this eigenvalue is the inverse iteration procedure

%D
ðkþ1Þ ¼ K�1

m ðKu � KlÞDðkÞ with Dð0Þ ¼ random vector;

*mðkþ1Þ ¼
1

%D
ðkþ1Þ
i

with j %Dðkþ1Þ
i j ¼ maxj j %D

ðkþ1Þ
j j;

Dðkþ1Þ ¼ *mðkþ1Þ %D
ðkþ1Þ

;

9>>>>=
>>>>;

k ¼ 0; 1;y; ð12aÞ

which is terminated when

max
i

D
ðkþ1Þ
i � D

ðkÞ
i

��� ���oTol1 or k ¼ kmax; ð12bÞ

where D
ðkÞ
i is the ith element of DðkÞ; Tol1 is the user specified error tolerance which may not be equal

to Tol in Eq. (3), and kmax is the specified maximum number of iterations allowed. Note that since
DðkÞ has been normalized previously, only absolute error control is used in Eq. (12b). This is the basic
method used for computation of mode vectors in this paper and it gives excellent approximations, o
(see Eq. (22) below) andD, to og andDg: (Note that to ensure convergence to the absolutely smallest
eigenpair, the initial mode vector Dð0Þ is composed of random numbers in the range of (0,1).)

3. Position of interior nodes

When inserting an interior node into a member of length L which has an oFDog; its position
must be chosen such that the sub-members produced have neither oFDog nor such unequal lengths
that numerical instability may occur. The earlier paper [8] gives a general method for locating
interior nodes which can be applied to members regardless of their complexity, but admitted that it
lacked the elegance of formulas where such can be obtained. Therefore, this section presents such
formulas for Bernoulli–Euler beams with uncoupled axial behaviour, with proofs of their validity.
For simplicity, the proofs are for oF ¼ og; because extension to oFDog is clearly possible.

Rule 1. If o ¼ oF and oF is a lateral member fixed-end vibration frequency, it is recommended that

sub-members of length L� ¼ L=2 should be adopted when Bernoulli–Euler theory is used in the
absence of axial loading.

Proof. The global natural frequency og satisfies the local characteristic equation [1]

1� cosh l cos l ¼ 0 with l ¼ L

ffiffiffiffiffiffiffiffiffiffi
mo2

g

EI

4

s0
@

1
A; ð13Þ

where m is the mass per unit length and EI the flexural rigidity. If the global natural frequency og

coincides with any sub-member oF ; it must simultaneously satisfy

1� cosh ðl�Þ cos ðl�Þ ¼ 0 with l� ¼ l=2: ð14aÞ
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Since cosh ðl�Þ > 0; this can be written as

cos ðl�Þ ¼
1

cosh ðl�Þ
; ð14bÞ

while Eq. (13) can be written as

1� ð2 cosh2 l� � 1Þð2 cos2 l� � 1Þ ¼ 0: ð15Þ

Substituting Eq. (14b) into Eq. (15) shows that Eqs. (14b) and (15) hold true simultaneously
only if

2ðcosh l� � cos l�Þ2 ¼ 0: ð16Þ

This requires l� ¼ 0; which represents an irrelevant rigid body mode. Hence, Eqs. (13) and (14a)
cannot hold simultaneously, which completes the required proof that sub-members with L� ¼ L=2
cannot have a flexural oF coincident with og: &

Rule 2. If o ¼ oF and oF is a fixed-end axial vibration frequency of a member, it is recommended

that sub-members of lengths

Lð1Þ ¼
1

2
�

1

2k


 �
L and Lð2Þ ¼

1

2
þ

1

2k


 �
L; k ¼ 2; 4; 6;y; ð17aÞ

Lð1Þ ¼ Lð2Þ ¼
L

2
; k ¼ 1; 3; 5;y ð17bÞ

should be used where

k ¼
n
p

with n ¼ ogL

ffiffiffiffiffiffiffi
m

EA

r
ð18Þ

and EA is the extensional rigidity of the member.

Proof. The global natural frequency og satisfies the local characteristic equation sin n ¼ 0 [1],
which gives n ¼ kp; (k ¼ 1; 2; 3;y). Calculating nðiÞ from LðiÞ (i=1,2) for n ¼ kp gives

nð1Þ ¼
k

2
p�

p
2
; nð2Þ ¼

k

2
pþ

p
2
; k ¼ 2; 4; 6;y;

nð1Þ ¼ nð2Þ ¼
k

2
p; k ¼ 1; 3; 5;y

and inserting the above into the local characteristic equation gives

sin nðiÞ
�� �� ¼ 1; ð19Þ

i.e., sin nðiÞa0 and so the global natural frequency og is no longer a fixed-end frequency oF for
either sub-member. &
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Note that Rule 1 prevents a member with a flexural oFDog from being replaced by sub-
members with their flexural oFDog; but their value of n must also be examined if it closely
approximates kp; an axial oFDog: Similarly, Rule 2 must be supplemented by checking that
1� cosh lðiÞ cos lðiÞ (i ¼ 1; 2) is not dangerously close to zero.

4. Advantages of the new method

Of course, Km is not inverted but instead is factored once only into LALT ; where A is a diagonal
matrix, because each iteration step requires only forward- and back-substitution. Additionally,
since the right-hand side vector DðkÞ is known at each iteration step, the right-hand product vector
can be calculated coefficient by coefficient so that Ku and Kl need not be formed and stored.
Finally, as when using the W–W algorithm to converge on the natural frequency, pivoting is
rarely found to be necessary, so that the symmetric, banded and sparse properties of K can be fully
utilized.
While the frequency error is jom � ogj; Eqs. (8) and (9) provide strong evidence that the mode

vector error is second order, i.e., of order ðom � ogÞ
2 and this, plus all the numerical evidence

available to them, has convinced the authors that this method is second order even though no
strict proof is given. Such accuracy means that om need not approximate og very closely, e.g., if
machine accuracy is 14 decimal digits, computed mode vectors will achieve almost machine
accuracy for any om satisfying jom � ogjo10�7; i.e., the user can specify TolD10�7 in Eq. (3).
This reduces the chances of ill-conditioning compared with Ref. [8].
Because the error is dominated by ðom � ogÞ

2 and is unaffected by ðol ;ouÞ; slightly enlarging
the interval ðol ;ouÞ while keeping om unaltered is an optional means of improving the
conditioning and hence the accuracy of the difference approximation (7) to K0

g: However, such
tuning appears not usually to be necessary.
Because KðoÞ is a dynamic stiffness matrix in this paper it is never linear in o2 (=l say).

However it would be for a typical finite element free vibration problem because then the problem
degenerates to KD ¼ lMD; for which the proposed algorithm gives an exact formulation, as
follows:

Km ¼ K� lmM; Ku � Kl ¼ �ðlu � llÞM: ð20Þ

Hence Eq. (8) reduces to

ðK� lmMÞD ¼ ðl� lmÞMD ð21Þ

and cancelling the lmMD terms returns Eq. (21) to the original form KD ¼ lMD:
The first order natural frequency accuracy does not match the second order mode vector

accuracy. However, whenever the computed *m satisfies Eq. (11), extrapolation Eq. (10) gives the
second order accuracy approximation

om ¼ om � *mðou � olÞ: ð22Þ

One of the most desirable features of the proposed formulation is the *m-check of Eq. (11), i.e.,
j *mjo1

2
: Although not a necessary condition for an approximate solution, it gives a valuable

indication of the quality of the solution, as follows. If *m from Eq. (9) satisfies Eq. (11) then the

ARTICLE IN PRESS

S. Yuan et al. / Journal of Sound and Vibration 269 (2004) 689–708698



corresponding mode vector D is reasonably acceptable and Eq. (22) can be used to obtain the
better natural frequency om: Otherwise, if the *m-check fails, the solution requires further
improvement not because of insufficient accuracy, but due to it being unreliable because the
extrapolated frequency om given by Eq. (22) lies outside the range ðol ;ouÞ for which it is known
that Nr0 ¼ 0: In practice, the results in this paper and all others obtained by the authors confirm
the expectation that inverse iteration for narrow ranges ðol ;ouÞ is unlikely to cause failure of the
*m-check and even less likely to cause erroneous results. Nevertheless, whenever it occurs the
computations should ideally be repeated for a different value of Tol in order to alter ol and ou:
The second order accuracy of the mode vector and of om allows larger error tolerances Tol to be

used (D to the square root of the desired tolerance) for the iterative convergence on the natural
frequency that precedes the mode computations. Hence, it requires fewer iterations. This
considerably reduces the total time needed to find a natural frequency and its associated mode,
because it is dominated by these iterations and by the approximately equally time consuming
factorization of Km in Eq. (12a).
The inverse iteration applied to the eigenproblem of Eq. (9) is essentially an accelerated version

due to root shifting and so converges very rapidly, especially when omDog: This is easily seen by
assuming that the interval ðol ;ouÞ is very small and recalling that the convergence rate of the
inverse iteration for the ith eigenpair is characterized by the ratio of the ith and (i+1)th
eigenvalues ðj *mijoj *miþ1jÞ; i.e.,

r ¼
*mi

*miþ1

����
����D og;i � om

og;iþ1 � om

����
����oo

og;i

og;iþ1

����
����: ð23Þ

5. Multiple natural frequencies

Suppose that the W–W algorithm shows that Nr > 1 in ðol ;ouÞ: Then, if ðol ;ouÞ is small
enough, Eq. (9) will give exactly Nr eigenvalues that satisfy Eq. (11). These may be completely
coincident or merely very close together, but in either case they are found as the first Nr

numerically smallest eigenvalues of Eq. (9). Because this is a pure linear algebraic eigenproblem
the Nr required eigenpairs can be obtained one by one by using the inverse iteration procedure of
Eq. (12a) with the usual orthogonalization procedure. For example, if the first i � 1ðoNrÞ
eigenpairs have been obtained the ith eigenpair can be computed by setting the initial vector to

*D
ð0Þ
i ¼ D

ð0Þ
i �

Xi�1

j¼1

ajDj: ð24Þ

Here D
ð0Þ
i is a random vector, Dj is the jth eigenvector of those already obtained, and

orthogonalization gives aj as

aj ¼
DT

j ðKu � KlÞD
ð0Þ
i

DT
j ðKu � KlÞDj

: ð25Þ

Because *D
ð0Þ
i is orthogonal to the first i � 1 eigenvectors the iteration cannot converge to any

previously obtained eigenvector. Additionally, coincident natural frequencies are distinguished
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from very close ones by comparing the computed eigenvalues *m and the extrapolated frequencies
om: However, if the Nr eigenvalues are very close rather than being identical, the convergence rate
r approaches unity and so the inverse iteration could converge very slowly. To help to rectify this,
the well-known simultaneous or subspace iteration method, e.g., see Chapter 10 of Ref. [12], has
been adopted in this paper, although brevity requires omission of its details. (Note that for
coincident natural frequencies the convergence may no longer be second order.)

6. Illustrative examples

For simplicity, units are ignored in the following numerical examples. In the first two examples,
the mode vectors were found for all natural frequencies lying between given frequency bounds and
Tol and Tol1 were not specified, so that the inverse iteration continued until the exact answer was
converged on. For the remaining examples, error tolerances Tol and Tol1 were given and the
frequency bounds were determined by using the W–W algorithm. The examples were chosen
carefully to test and reflect the overall performance of the mode computations and are ordered
such that simple, easy and small problems precede more complex, difficult and larger ones.
Throughout, about 14 decimal digits were used for floating point number calculations and the
Fortran 90 computer code used was run on a standard Pentium Pro 200MHz PC.
The examples are mainly based on those of the earlier recursive paper [8]. They are needed

because the present method converges to its final solution in a completely different way because it
is not recursive and uses differencing in place of explicit expressions for the derivatives.

6.1. Example 1

This example is axial vibration of the rod shown in Fig. 2 with m ¼ EA ¼ L ¼ 1; where m is the
mass per unit length and EA the extensional rigidity. Its exact natural frequencies are

og ¼ 1
6
p; 1

2
p; 5

6
p; 7

6
p; 3

2
p; 11

6
p;y:

The two member mesh used was chosen deliberately to make og ¼ p=2; 3p=2;y identical to the
oF of the second member, so that interior nodes needed to be inserted when the modes
corresponding to those frequencies were calculated.

Solution: Rule 2 shows that for both cases a central node is the recommended choice. The
modes corresponding to the typical examples of og ¼ p=6 and og ¼ 3p=2 were computed, with a
central node inserted into the second member for the 3p=2 case.
The frequency bounds ol and ou assigned both approximated og to only about two decimal

places. Table 3 shows the computed results o for the natural frequencies og ¼ p=6 and 3p=2 and
shows that convergence to the exact solutions Dg (normalized to make the first component unity)
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Fig. 2. Vibration of a rod (Example 1)
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took six iterations. The extrapolated natural frequencies om and their relative errors (to 3
significant figures) were then, respectively,

om ¼ 0:523653496861917; 4:71239010403247;

om � og

og

����
���� ¼ 1:05	 10�4; 2:38	 10�7: ð26Þ

The errors in om are clearly roughly the square of the relative errors in om; which are
1.22	 10�2 for og ¼ p=6 and 5.07	 10�4 for og ¼ 3p=2; i.e., the extrapolated natural frequencies
have second order accuracy.

6.2. Example 2

This example is vibration of the cross-shaped rigidly jointed frame shown in Fig. 3, which has
four identical members. (The modes and joints 2–5 shown on Fig. 3 are not required for this
example but are needed by Example 3). The members have m ¼ EI ¼ L ¼ 1; but with their
extensional rigidity EA ¼ 104 to give them sensible slenderness ratios. Its first three natural
frequencies are og1 ¼ 15:418206 and og2 ¼ og3 ¼ 22:274740; i.e., the second and third natural
frequencies are coincident. The corresponding mode vectors, i.e., fu1; v1; y1g at the centre joint,
were computed.

Solution: For the first natural frequency, an initial vector f1; 1; 1g was assumed with ol ¼ 15:4;
om ¼ 15:5 and ou ¼ 15:6: After three inverse iterations the mode vector was Dð3Þ ¼
f0:0000000000 0:0000000000 1g; which is exact to within 10 decimal places. The extrapolated
frequency and its relative error were, respectively,

om ¼ 15:41918308;
om � og

og

����
���� ¼ 6:34	 10�5: ð27Þ
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Table 3

Numerical results for D at each iteration for Example 1

og p=6 3p=2
om 0.53 4.71

ol 0.52 4.70

ou 0.54 4.72

0 {1,1} {1,1,1}

1 {1,2.00386864017409} {1,0.008002532834336, �0.988757409703173}

2 {1,1.99999004813192} {1,0.000013890216254, �0.999967349535445}

3 {1,2.00000002563382} {1,0.000000044952386, �0.999999950230350}

y y y

6 {1,2.00000000000000} {1,0.000000000000000, �1.000000000000000}

Exact {1,2} {1,0,�1}
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For the second and third frequencies an initial vector {1,1,1} was assumed with ol ¼ 22:26;
om ¼ 22:27 and ou ¼ 22:28: After eight inverse iterations the mode vector obtained was

Dð8Þ ¼ f1 1 0:0000000000g; ð28Þ

which is again exact to within 10 decimal places. Subsequent iterations with an initial vector
orthogonal to the above one easily led to D ¼ f1 � 1 0:0000000000g; which is clearly orthogonal
to the D(8) of Eq. (28), by analogy with the earlier discussion of Fig. 1. The extrapolated frequency
and its error were, respectively,

om ¼ 22:274720;
om � og

og

����
���� ¼ 8:98	 10�7: ð29Þ

It is informative to give an example where the *m-check is not passed due to extremely wide and
biased initial bounds. Such an example is to find the fifth frequency og5 ¼ 49:96486 with bounds
ol ¼ 40; ou ¼ 50: The results after three inverse iterations were *m ¼ �0:6017691; om ¼ 51:01769
and the error changed as follows:

om � og

og

����
���� ¼ 9:94	 10�2;

om � og

og

����
���� ¼ 2:11	 10�2:

As expected, second order accuracy was not achieved because the *m-check failed. Nevertheless, the
accuracy order was improved by obtaining om instead of using om and hence the results were still
reasonably acceptable. There is also a hint that the upper bound ou ¼ 50 is very likely to be a
better choice for the extrapolated om:
Taking three bisection steps aided by the W–W algorithm leads to the alternative cases ol ¼ 45;

47.5 or 48.75, with ou ¼ 50 unchanged. The *m-check failed for the first two cases and for ol ¼
48:75 the results were

*m ¼ �0:4915181; om ¼ 49:98939

and the errors were

om � og

og

����
���� ¼ 1:18	 10�2;

om � og

og

����
���� ¼ 4:91	 10�4:
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Fig. 3. Cross-shaped rigidly jointed frame and its mode shapes for og2; og3; and og4 (Examples 2 and 3).
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Here although the *m-check was still only just passed, a much better order of accuracy was
obtained and the most important fact is that the extrapolated frequency was assured to be better
than any of ol ; om or ou: To reach a frequency of at least the same accuracy as om ¼ 49:98939 by
bisection would require four more bisections.

6.3. Example 3

This example is again identical to Example 2 except that the axial rigidity was increased to
EA ¼ 106 to crudely approximate inextensible members. Its first four natural frequencies are
og1 ¼ 15:418206; og2 ¼ og3 ¼ 22:372319 and og4 ¼ 22:373285; so that the coincident second and
third ones are very close to the fourth one, which is also the lowest fixed-end frequency oF of all
four members and corresponds to a local mode with D=0.

Solution: This might be expected to complicate the mode computations. Instead of assigning
frequency bounds ol and ou; error tolerances Tol and Tol1 were given to control the solution
accuracy for both frequencies and mode vectors. Two cases were considered, namely Tol ¼
0:5	 10�3 and Tol=0.5	 10�4, with Tol1 ¼ Tol2 to give mode vectors to second order accuracy.
Members were not initially given interior nodes and so D consisted of the three displacements
{u1;v1;y1} at the central joint 1 in Fig. 3. Interior nodes were inserted at the centres of the members
when necessary to give D* and were numbered as shown in Fig. 3. Tables 4 and 5, in which
D� ¼ fu1; v1; y1; u2; v2;y; y5g; give the computed results and Fig. 3 shows the mode shapes.
Using Tol ¼ 0:5	 10�3 caused all three clustered frequencies o2; o3 and o4 to lie between ol

and ou and hence to appear coincident. As predicted by the preceding theory, the extrapolation
technique within the mode computation algorithm increased the frequency accuracy tremendously
and also separated o4 from the truly coincident o2 and o3; while the computed mode vectors are
as exact as Tol1 ¼ 0:25	 10�6 allowed.
The higher frequency specified by Tol ¼ 0:5	 10�4 resulted in the three clustered frequencies

o2; o3 and o4 being separated into two intervals, one containing o2 and o3 and the other o4: The
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Table 4

Computed results for o2; o3 and o4 of Example 3

Tol 0.5	 10�3 0.5	 10�4

(ol ; ou) (22.364377, 22.373413)a (22.371465, 22.372595)b, (22.372868, 22.373687)c

Do ¼ ou2ol 0.009036a 0.001130b

0.000819c

o2m=o3m (Err) 22.368895a (0.003424) 22.372030 (0.000289)

o4m (Err) (0.004390) 22.373277 (0.000008)

o2m ¼ o3m (Err) 22.372319 (0) 22.372329 (0.000010)

o4m (Err) 22.373286 (0.000001) 22.373285 (0)

Number of subspace iterations 3 10

4

Expanded K* used? For all three frequencies Only for o4

Notes: Err=om2og or om2og:
aFor o2; o3 and o4:
bFor o2 and o3:
cFor o4:
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frequency accuracy was again greatly increased by the extrapolation technique. When using
subspace iteration to find o2 and o3 and their modes, o3(=o2) was very close to the adjacent
natural frequency og4ðog3=og4 ¼ 0:99996Þ: So Eq. (23) gives rDðo3m2o3mÞ=ðo4m2o3mÞD0:238;
which is far enough from unity to give fairly rapid convergence, which is why no more than 10
iterations were needed to satisfy Tol1: The convergence rate could have been greatly increased by
applying the commonly used convergence improvement technique of using one or two extra
vectors in the subspace iteration.
Note that in the Tol ¼ 0:5	 10�4 case, o2; o3 and their modes were found satisfactorily

without inserting interior nodes even though this resulted in a pole at og4; which is very close to
ou because og42ou=0.00069. As expected, this only moderately reduced the convergence rate
and hence moderately increased the number of iteration steps.
Table 5 shows the mode shapes numerically because the graphical alternative lacks the precision

needed by the above discussions. The first, fifth and higher modes were also computed without
difficulty but are omitted for brevity.

6.4. Example 4

This example is an unbraced rigidly jointed one bay, 10 storey frame. All 30 members (i.e., 10
beams and 20 columns) are identical and almost inextensible, with m ¼ EI ¼ L ¼ 1 and
EA ¼ 106:
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Table 5

Computed mode vectors corresponding to o2 and o4 for Example 3

Tol=0.5	 10�3 Tol=0.5	 10�4

D* for o2 D* for o4 D* for o2 D* for o4

1.3096423E�4 �3.8992294E�17 1.5671659E�12

1.2692544E�4 �1.0771324E�17 1.1363897E�12

9.6579140E�14 6.3896244E�9 1.4078678E�24

6.5486210E�5 �1.9510510E�17 7.8363198E�13

0.96916118 �1.0000000 �1.0000000

2.4260579E�4 �1.7500798E�9 2.1720997E�12

6.5486210E�5 �1.9510532E�17 1.0000000 7.8363198E�13

0.96916118 1.0000000 0.44867910 1.0000000

�2.4260579E�4 �1.7497613E�9 �1.2690872E�29 �2.1720997E�12

1.0000000 1.0000000 1.0000000

6.3466693E�5 �5.3911215E�18 5.6823040E�13

2.5032553E�4 �1.7502208E�9 2.9954870E�12

1.0000000 �1.0000000 �1.0000000

6.3466693E�5 �5.3910716E�18 5.6823040E�13

�2.5032553E�4 �1.7492648E�9 �2.9954870E�12
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Solution: Table 6 gives the storey beam sways of the fundamental mode calculated using
three alternative tolerances Tol; with Tol1 ¼ Tol: Since no exact solution is available, the Tol ¼
10�11 results were used to evaluate the accuracy of the natural frequencies and modes given by
Tol ¼ 10�3 and 10�5. Clearly both the extrapolated natural frequencies and mode vectors
are accurate to second order because the errors are better than Tol2; even though Tol1 ¼ Tol2 was
not specified.

6.5. Example 5

This example is identical to Example 4 except that Tol1 ¼ Tol2 and the unbraced frame was
expanded to have 20 storeys and 10 bays.

Solution: The modes obtained cannot be tabulated for reasons of space, but again the
extrapolated natural frequencies and mode vectors for Tol ¼ 10�3 and 10�5 were accurate to
second order.
However, this example was principally used to explore the speed of the method compared to

existing methods for a medium-sized problem (K is 660	 660). Such comparisons should ideally
be obtained by running equally efficiently coded versions of the methods on the same computer.
Even then the percentage time savings achieved by the method presented would not be the same
for different structures, different required accuracy or different computers. Therefore the authors
used their extensive experience of the earlier methods and their results from the method presented
to estimate the time saving when obtaining results to engineering accuracy, taken to mean relative
errors of approximately 10�4 for the natural frequencies and modes, i.e., TolD10�2: Hence the
method presented was estimated to save approximately 37% of the time needed by the random
force vector method [13] when used with the fastest available method [2] for converging on a
natural frequency prior to calculating the corresponding mode.
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Table 6

Fundamental mode: sways of beams for Example 4

Tol 10�3 10�5 10�11

o1m 0:26368713 0:264035820961 0:26403937032
%
7

o1m 0:26403960 0:264039370350 0.264039370326

10 1.00000000 1.00000000 1.00000000

9 0.98029996 0.98029996 0.98029996

8 0:9372304
%
4 0.93723043 0.93723043

7 0:8701114
%
7 0.87011145 0.87011145

6 0:7804582
%
8 0.78045825 0.78045825

5 0:6705705
%
7 0.67057052 0.67057052

4 0:5433084
%
7 0.54330842 0.54330842

3 0:40206720 0.40206715 0.40206715

2 0:25124642 0.25124638 0.25124638

1 0:10057350 0.10057348 0.10057348

Notes: The left-hand column indicates storey level of beam. Underlined numbers are inaccurate digits. The number of

inverse iterations was always 3.
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7. Conclusions

The new second order high precision method presented was carefully designed to meet all 11 of
the criteria used in Table 2. Of these, the first five criteria (simplicity, speed, cost, accuracy and
reliability) are all fundamentally desirable and were the major goals achieved, as described in the
next five paragraphs.
Simplicity has been achieved by converting the non-linear (transcendental) eigenproblem mode

computations into finding the fundamental eigenpair for a generalized linear matrix eigenproblem,
i.e., Eq. (9). This is solved efficiently by inverse iteration or subspace iteration for, respectively,
single and multiple fundamental eigenvalues. Therefore, the method is basically as simple as inverse
or subspace iteration, i.e., as the commonest methods used for linear matrix eigenproblems.
High speed is achieved for three reasons. Firstly, only the fundamental eigenpair (single or

multiple) is needed and this is usually the easiest one to obtain. Secondly, the inverse iteration for
solving Eq. (9) is accelerated by automatically incorporating the root shift technique, see Eq. (23),
to tremendously improve the convergence rate such that usually two to three iterations suffice.
Thirdly, the second order accuracy of both the mode vectors and the extrapolated natural
frequencies implies that the initial frequency bounds for the required mode and the natural
frequency accuracy need be much less accurate, thus reducing the total computation time, e.g., by
about a third when obtaining engineering accuracy for quite large structures, see Example 5.
Cheapness is achieved partly because of this reduced computation time. Reductions of memory

required also contribute, as follows. The banding, sparseness and symmetry of the stiffness matrix
can be used during ordinary Gauss elimination, thus sharing these advantages of the usual finite
element methods. Additionally, the right-hand side product vector can be calculated coefficient by
coefficient to avoid forming and storing the global matrices Ku and Kl ; thus optionally reducing
the memory requirement by making a sacrifice of run time, which is usually moderate because
normally very few inverse iterations are needed.
High accuracy is a major advantage, mainly because first order frequency bounds yield second

order accuracy for both modes and the extrapolated natural frequencies. Hence, many of the
numerical results presented appear to be exact to the full eight or more digits given. The second
order accuracy also incidentally implies that the proposed method is exact for linear matrix
eigenproblems, as opposed to for the transcendental eigenproblems of this paper.
High reliability is achieved from four sources. Firstly, the method correctly produces all

required mode vectors, not just global ones. Secondly, all modes computed are automatically
orthogonal even if they are multiple modes corresponding to coincident natural frequencies.
Thirdly, the extrapolation of natural frequencies is able to separate any close natural frequencies,
which appear to be coincident at the end of the initial natural frequency bounding calculations.
Fourthly, the *m-check automatically provides a useful means to assess any possible inaccuracy due
to ill conditioning.
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Appendix A. Nomenclature

D global joint displacement amplitude vector
EA extensional rigidity
EI flexural (i.e., bending) rigidity
J number of natural frequencies below o*
J0 value of J if D is clamped, so that D=0

K global dynamic stiffness matrix
KD upper triangular matrix obtained from K by standard Gauss elimination
L length of member or element
m mass per unit length of member
Nr number of natural frequencies of structure in interval (ol ;ou)
Nr0 number of oF in interval (ol ;ou)
Tol user specified error tolerance for frequency bounds
Tol1 user specified error tolerance for mode vectors
l dimensionless parameter for member flexure, see Eq. (13), or o2

*m eigenvalue of inverse iteration method
n dimensionless parameter for member axial behaviour, see Eq. (18)
r approximate convergence rate of inverse iteration
o frequency (rad/s)
o* arbitrary value of o

Subscripts
F element fixed-end natural frequencies are oF

g values at any exact natural frequency of structure
l values at lower bound on og

u values at upper bound on og

m values half way between ol and ou

m second order approximation to og; see Eq. (22)
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